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Abstract

We perform Monte Carlo simulations to study the Bernoulli (p) bond
percolation on the enhanced binary tree which belongs to the class of
nonamenable graphs with one end. Our numerical results show that the system
has two distinct percolation thresholds pc1 and pc2. The mean cluster size
diverges as p approaches pc1 from below. The system is critical at all the points
in the intermediate phase (pc1 < p < pc2) and there exist infinitely many
infinite clusters. In this phase, the corresponding fractal exponent continuously
increases with p from zero to unity. Above pc2 the system has a unique infinite
cluster.

PACS numbers: 64.60.ah, 68.35.Rh, 64.60.al, 89.75.Hc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The geometry of a space, which is characterized by dimensionality and topology, is a very
important factor for the collective dynamics and statics of the elements embedded on it. It
takes special significance in critical phenomena where correlation length diverges. Critical
phenomena have been one of the main subjects of statistical physics and intensively studied
over various systems such as interacting spin models, map cellular-automata, percolation, etc.
In recent years, more and more attention has been paid to critical phenomena on a class of
graphs which have quite different properties to those on the well-studied Euclidean lattices.
One representative example is the class, so-called (almost) transitive nonamenable graphs
(NAGs) [1, 2], e.g., Cayley trees, hyperbolic lattices and enhanced trees [3] (see figure 1
for the binary case). Here ‘transitive’ graph means that all vertices on it play exactly the
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Figure 1. (Left) Schematic diagram of the enhanced binary tree with six generations. The dangling
bonds on the left and right sides are connected in the periodic boundary condition. (Right) Another
presentation of EBT (thick-black line) and its dual lattice (thin-red line). For clarity, the root vertex
is not displayed for either the EBT or the dual lattice.

same role in the large size limit. The fundamental property of transitive NAGs is that the
number of vertices in a ball centered at the origin increases exponentially with the radius.
Recent studies have reported that this property crucially affects the collective dynamics to
make it differ greatly from those on Euclidean lattices [1–10]. Although it seems that such
graphs are non-realistic and studies on them are only for theoretical interests, their distinctive
features, so-called small-world property and a non-zero clustering coefficient, are common
with complex networks, which are widely found in social and natural systems [11, 12]. For
example, percolation problems on complex networks are related to error and attack tolerance
and cascade failures of real world systems [13]. Instead of extensive studies the interplays
between network structures and critical phenomena are still unclear. Transitive NAGs have
large advantages in their simplicity, e.g., regularity of the lattice, compared with usually
studied complex networks. Studies of them may possibly lead to a breakthrough on this
complex problem.

The number of ends, which indicates a kind of vulnerability of graphs, is an important
concept for NAGs. The number of ends e(G) of an infinite graph G is defined as the supremum
of the number of infinite connected components in G\S, where G\S is the graph obtained
from G by removing arbitrary finite subgraph S and the bonds incident to those. While trees
have infinitely many ends, hyperbolic lattices and enhanced trees have only one end. Recent
analytical studies have indicated that the Bernoulli bond percolation on NAGs with one end
exhibits a new type of phase transition, so-called multiple phase transition (MPT), which takes
three distinct phases according to open bond probability p as follows [1, 2]:

• Nonpercolating phase: there is no infinite cluster for 0 � p < pc1(G).
• Intermediate phase: there are infinitely many infinite clusters for pc1(G) < p < pc2(G).
• Percolating phase: there is a unique infinite cluster for pc2(G) < p � 1.

Here infinite cluster means a cluster whose mass diverges with system size N as Nψ with
0 < ψ � 1. As is well known for the Euclidean lattices, any amenable graph, e.g., can have at
most only one infinite cluster, i.e., pc1 = pc2 [14]. By contrast there are always plural infinite
clusters in the percolating phases of trees. This is a consequence of infinitely many ends,
i.e., trees have no long cyclic paths and split easily. Both exponential growth and sufficient
amount of loops are necessary for graphs to exhibit three distinct phases. Indeed, Benjamini
and Schramm proved the existence of a MPT on any planar transitive NAG with one end [10].
In addition, it is proved that the transition at pc1 belongs to the mean-field universality class
[15].
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Previous studies of MPTs have been restricted in the analytic way based on probability
theory and we lack numerical research, which will bring us the quantitative indication of
MPTs. The finite size effect especially is hardly investigated by the analytic approach. This
effect is crucial to argue the NAGs and the realistic network, where the typical length scale
of the graphs often grows as a logarithmic function of the total number of vertices N and
is still small for considerably large N. In this paper, we investigate a MPT by Monte Carlo
simulations taking the enhanced binary tree (EBT) as an example. Our numerical results
actually give two distinct critical probabilities pc1 and pc2. All the points in the intermediate
phase (pc1 < p < pc2) are critical and there exist infinitely many infinite clusters. The
corresponding fractal exponent continuously increases with p from 0 to 1 and bridges a gap
between non-percolating and percolating phases.

2. Fundamental mechanism of the two-stage transition

In this section we provide a basic picture of MPTs on NAGs. Although we consider the EBT
as an example, the concept is not specific to it.

At first we define an enhanced binary tree with L generations. We prepare vertices vn,m for
n = 0, 1, . . . , L − 1 and m = 0, 1, . . . , 2n − 1. The total number of vertices N equals 2L − 1,
i.e., L ≈ log2 N . Inter-generation (radial) bonds are supposed between vn,m and vn+1,2m and
between vn,m and vn+1,2m+1. These bonds yield a binary tree. Furthermore, intra-generation
(circumferential) bonds are added between vn,m and vn,m+1, which means ‘enhanced’. All of
inter- and intra-generation bonds are open with homogeneous probability p to yield connected
clusters. EBT is not exactly transitive but almost transitive since the root vertex v0,0 is special
and the center can be defined. But this presumably does not affect the essential property of
the critical phenomena.

The following scenario is based on the natural assumption that the connectedness
(correlation) function; the probability that a vertex of the �th generation is connected to
the root cluster, that v0,0 belongs to, exponentially decays with � as

C0(�) ∝ 2−�/ξ . (1)

Here ξ means a correlation length along the generation (radial) direction and it monotonically
increases with bond opening probability p. The averaged mass of the root cluster 〈s0〉 is
calculated by summing up the connectedness function as

〈s0〉 ∝
L−1∑
�=0

2�C0(�) = αL − 1

α − 1
, where α ≡ 21−1/ξ (2)

and 2� is the number of vertices at the �th generation taking a role of surface area factor.
For ξ < 1 and α < 1, 〈s0〉 converges to finite value in the thermodynamic limit L → ∞.
On the other hand, 〈s0〉 diverges with L for ξ � 1 and α � 1. It is important that the mass
of cluster diverges despite the finite correlation length owing to the exponentially diverging
surface area. This is an exact mechanism for the percolation transition on the binary Cayley
tree, where C0(�) = p� and ξ = 1/ log2(1/p). We can define the critical probability pc1 at
which a correlation mass diverges. From equation (2), 〈s0〉 diverges very slowly with respect
to the system size as

〈s0〉L ∝ L ≈ log2 N at p = pc1. (3)

Above pc1, 〈s0〉 diverges with the system size as

〈s0〉L ∝ αL = 2L log2 α = Nψ, (4)
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where

ψ ≡ log2 α = 1 − 1/ξ. (5)

The exponent ψ mimics df /d, where df is the fractal dimension of a cluster embedded on
the d-dimensional Euclidean lattice. Note that ψ is a function of ξ and increases with p.
Even though a cluster mass diverges above pc1, the ratio 〈s0〉/N , which can be regarded
as an order parameter, goes to zero for N → ∞ as far as ψ < 1. If ξ diverges at a
certain p,ψ continuously approaches to 1. We define the critical probability pc2 at which the
correlation length diverges. At this critical point a prefactor of the connectedness function in
equation (1) in form �−η̃ takes an important role. The exponent η̃ corresponds to 2 − d + η for
the d-dimensional Euclidean lattice. Positive η̃ makes 〈s0〉/N vanish in the thermodynamic
limit and the order parameter continuously rising from zero at pc2. In this case, however,
〈s0〉/N at pc2 approaches to zero very slowly with N as (log2 N)−η̃.

The finite size dependences are summarized as

〈s0〉 ∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N0 for p < pc1

log2 N at p = pc1

Nψ(p) for pc1 < p < pc2

N/(log2 N)−η̃ at p = pc2

N for p > pc2.

(6)

The cluster mass shows fractal behavior in the phase pc1 < p < pc2 in contrast with the
Euclidean lattice which has a critical point and unique fractal exponent. We consider the
discrepancy of the probabilities for correlation mass and length is the key concept of the MPT
on NAGs, which never occurs on the Euclidean lattices. In the following section, we confirm
the validity of the scenario shown above by numerical simulations.

3. Numerical results

Here let us explain the detail of our Monte Carlo simulations. The systems with L = 10–22 are
investigated. We generate samples, i.e., sets of open and closed bonds, by using pseudo random
number generated by the Mersenne–Twister method [16]. The ensemble average of observed
quantities is taken over 480 000 samples. In order to improve the precision of the average
values for small p, we treat the bonds which is connected to initial three generations exactly,
i.e., counting all 23×(23−1)−2 possible realizations with probability pno(1 −p)nc , where no (nc)

is the number of open (closed) bonds. This treatment only takes the CPU time independent
of N.

We also investigate the percolation on the dual lattice of the EBT (see figure 1), which is
also a NAG with one end. Each vertex of the dual lattice is put on the center of triangle or
rectangle cells of the EBT and each bond, which is open with probability p, crosses with the
conjugate bond of the EBT. A duality relation

pc1 + pc2 = 1 and pc2 + pc1 = 1 (7)

is known for dual planar NAGs [10].
As mentioned in the previous section the N-dependence of 〈s0〉 for the finite size systems

determines the expected three phases. So we estimate a fractal exponent

ψ = d ln〈s0〉N
d ln N

≈ d

dL
log2〈s0〉N, (8)

so that 〈s0〉 ∝ Nψ . In practice, we calculate ψ by the difference [ln〈s0〉2N − ln〈s0〉N/2)]/
[ln(2N) − ln(N/2)]. This is a good approximation of equation (8) for large N when 〈s0〉 is
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Figure 2. The p-dependence of ψ for the enhanced binary tree and its dual lattice. For the latter,
the horizontal axis is 1 − p to confirm the duality relation. Results for various Ls are shown
together. The two vertical lines indicate p = 0.304 and p = 0.563, respectively.

Figure 3. The p-dependence of ϕL for the EBT (left) and its dual lattice (right) with several system
sizes. The crossing point indicates the transition point where 〈s0〉 logarithmically diverges.

a power function of N. The p-dependences of ψ for both of the EBT and the dual lattice are
shown in figure 2. Three distinct phases can be observed as expected. The exponent ψ of the
EBT grows from zero to unity in the intermediate phase between p ≈ 0.30 and p ≈ 0.56.
Conversely, ψ of the duality lattice decreases from unity to zero between 1 − p ≈ 0.30 and
1 − p ≈ 0.56. This suggests that the duality relation actually holds.

The N-dependence of 〈s0〉 at pc1 is decided as follows. Approaching pc1 from above,
one expects that ψ goes to zero but 〈s0〉 diverges as ln N (∝ L) at p = pc1. To exclude the
possibility that 〈s0〉 ∝ Lϕ with ϕ 	= 1, we plot

ϕL(p) = d ln〈s0〉N
d ln L

, (9)

as a function of p in figure 3. As L goes to infinity, ϕL(p) decreases to zero for p < pc1

and diverges for p > pc1. Only at p = pc1, ϕL converges to N-independent value, which
is estimated at unity. Practically, we obtain the precise critical probability pc1 = 0.304(1)

from this crossing point and pc1 = 0.436(1) in the same way. Using the duality relation (7),
pc2 = 0.564(1) and pc2 = 0.696(1) are also determined.
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(a) (b) (c)

Figure 4. Typical geometry of giant clusters in the system with L = 20 for p = 0.304 (a),
0.400 (b) and 0.564 (c).

In figure 4, we show the geometry of the root cluster on the EBT by choosing samples
which has a relatively large size cluster. Figure 4(a) is for p = 0.304 ≈ pc1. The cluster
survives marginally; its branches do not show spreading behavior, and therefore the mass of
the cluster is proportional to the number of generations. Figure 4(b) shows the cluster at a
middle point in the intermediate phase, which has many branches. The branches are spreading
with the generation and tend to diverge. However this cluster occupies very small part of the
whole system because spreading rate is slower than that of the EBT itself. Consequently, there
is a room for other infinitely large clusters. Figure 4(c) shows the cluster at p = 0.564 ≈ pc2.
It looks compact and will occupy the finite fraction of the whole system in the thermodynamic
limit.

Next, we estimate the critical exponents of the first transition at p = pc1. Let us suppose
a finite size scaling law

〈s0〉 ∝ Lγν/ν s̃0((pc1 − p)Lν/ν), (10)

for p < pc1.3 The scaling function s̃0(·) should have asymptotic forms,

s̃0(x) ∝
{

const for x 
 1
x−γ for x � 1.

(11)

Figure 5 shows a nice collapsing of data by using γ = 1.0 and ν/ν = 1.0. The data for the
dual lattice also show same scaling behavior (the form of the scaling function is very similar
to that for the EBT). This result confirms that the first transition at pc1 belongs to the mean
field universality class (γ = 1 and ν = ν = 1/2 [17]) as predicted in [15]. On the other
hand, the transition at pc2 does not look like a usual continuous phase transition. The order
parameter 〈s0〉/N is fitted well by 〈s0〉/N = 0.49 + 0.58L−0.083 at p = 0.564 ≈ pc2 using
data for L = 10–24 (not shown here). This means η̃ = 0 and 〈s0〉/N has a finite limit value
in L → ∞ at the critical point. We have to be careful to conclude such special feature,
discontinuous transition in the framework of second-order transition, but can say, at least, that
η̃ is smaller than 0.083.

Finally we investigate the distribution function ns , which is the number of clusters with
size s per vertex, in order to show that the system is always critical in the intermediate phase
as already implied from the N-dependence of 〈s0〉. We assume a finite size scaling law

ns(N) = N−ψτ ñ(sN−ψ), (12)

3 Consult [17] about the exponent ν. We use generation L as a characteristic length instead of chemical distance in
these papers. The number of retrenched horizontal paths is so small compared with vertical ones that we regard this
change to be irrelevant.
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Figure 5. Finite size scaling plot of 〈s0〉 as a function of p − pc1. The two groups, the EBT and
the dual lattice, are plotted in arbitrary unit to collapse.

 

Figure 6. Finite size scaling plot of ns as a function of s for several ps in the intermediate phase.
We use the values of ψ shown in figure 2. Here we eliminate the data for (s < 16) since the data
with too small s do not obey to the scaling law.

for fixed p between pc1 and pc2. Here the scaling function ñ(x) is a power function x−τ for
x 
 1, and a rapidly decreasing function for x � 1. In the scaling plot, figure 6, we use ψ

evaluated by equation (8) and the scaling relation τ = 1 +ψ−1 at each p (note that this relation
is based on the scaling relation τ = 1 + df /d on the Euclidean lattices). Figure 6 strongly
supports that the above finite size scaling (12) holds in the intermediate phase. Equation (12)
indicates that the characteristic size of clusters diverges with N → ∞ and a power-law
distribution, ns(s) ∝ s−τ , holds up to infinite s. When such a power law exists, it can be
said that the number of infinite clusters is infinite because one can always find ψ ′ satisfying
0 < ψ ′ < ψ for any positive ψ with which the number

N(s > Nψ ′
) ≡

∫ ∞

Nψ ′
ds Nns(N) ∼ N(1−ψ ′/ψ) (13)

diverges in the limit N → ∞.

7



J. Phys. A: Math. Theor. 42 (2009) 145001 T Nogawa and T Hasegawa

4. Summary and discussions

In conclusion, we studied the bond percolation problem on the enhanced binary tree by Monte
Carlo simulations for the first time. We observed the intermediate phase in addition to the non-
percolating and percolating phases where the average cluster size is finite and in the same order
of the whole system size N, respectively. All the points in the intermediate phase are critical
and the fractal exponent ψ , where 〈s0〉 ∝ Nψ , increases continuously from zero to unity with
increasing p. Note that the system looks critical in terms of mass of cluster, and the correlation
length must diverge at pc2.

We expect that the mechanism of the MPT on the EBT is commonly observed in the
other systems of NAGs with one end. There is, however, an interesting open problem, for
both analytic and numerical studies, whether non-transitivity or inhomogeneity changes the
scenario or not, which seriously corresponds to the complex networks.

Note added in proof. Since submitting this manuscript, we have become aware of a numerical study of the percolation
on hyperbolic lattices by Baek et al [18]. They also found a two-stage transition, which must correspond to the one
discussed in the present paper although the two are determined by observing different kind of qualities.
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